Stateless, layered, multi-threaded rendering – Part 4: Memory Management & Synchronization

The last post of this series basically concluded with the following questions: how do we efficiently allocate memory for individual command packets in the case of multiple threads adding commands to the same bucket? How can we ensure good cache utilization throughout the whole process of storing and submitting command packets?

This is what we are going to tackle today. I want to show how bad allocation behavior for command packets can affect the performance of the whole multi-threaded rendering process, and what our alternatives are.

Continue reading

Advertisements

Stateless, layered, multi-threaded rendering – Part 3: API Design Details

In the previous part of this series, I’ve talked a bit about how to design the stateless rendering API, but left out a few details. This time, I’m going to cover those details as well as some questions that came up in the comments in the meantime, and even show parts of the current implementation.

Continue reading

Stateless, layered, multi-threaded rendering – Part 1

In this post, I would like to describe what features and performance characteristics I want from a modern rendering system: it should support stateless rendering, rendering in different layers/buckets, and rendering that can run in parallel on as many cores as are available.

Continue reading

Adventures in data-oriented design – Part 4: Skinning it to 11

Having finished the third part of this series about data ownership, we will turn our attention to performance optimizations and data layout again in this post. More specifically, we will detail how character skinning can be optimized with a few simple code and data changes.

Continue reading

Adventures in data-oriented design – Part 3c: External References

In the last installment of this series, we talked about handles/internal references in the Molecule Engine, and discussed their advantages over raw pointers and plain indices.

In a nutshell, handles are able to detect double-deletes, accesses to freed data, and cannot be accidentally freed – please read the previous blog post for all the details.

Continue reading